A

20211 120 MINUTES

1.		fundamental land	_		•							
	A)	Valley flat	B)	Cut bar	ık	C)	Delta	D)	Cuesta			
2.	Melt	ing wherein a ph d:	ase me	lts to a lie	quid v	with the	same composi	tion as 1	the solid is			
	A)	Fractional me	lting		B)	Rayle	igh melting					
	C)	Congruent me	elting		D)	Batch	melting					
3.	An ig	gneous rock esse	ntially	compose	d of n	epheline	and augite:					
	A)	Hornblendite	B)	Ijolite		C)	Pyroxenite	D)	Spilite			
4.	An ir	regular elliptical	rim of	coral ree	ef arou	ınd a cei	ntral lagoon:					
	A)	Barrier reef			B)	_	ng reef					
	C)	Patch reef			D)	Atoll						
5.	Conr	Conrad discontinuity is commonly seen at a depth of:										
	A)	35 km	B)	11 km		C)	950 km	D)	2900 km			
6.	The	variation in the n	nagneti	c propert	ies of	the subs	surface rocks	can be e	xpressed in:			
	A)	Kelvin	B)	Nanote	slas	C)	Coloumb	D)	Joule			
7.	Long	sinuous ridges o	of sedir	nent depo	sited	by strea	ms that run ur	nder or v	within a			
	glaci	er is termed as										
	A)	Eskers	B)	Morain	es	C)	Fjords	D)	Horns			
8.	Rock	Rocks, stones or pebbles that have been sculptured, facetted or modified by sand										
		abrasion of wind action and having one or more highly polished flattened sides										
	A)	Yardangs	B)	Pedime	nts	C)	Ventifacts	D)	Bajadas			
9.		is a type of reverse fault where the dip of the fault is less than 45 degrees.										
	A)	Strike-slip fau			B)		lip fault					
	C)	Oblique-slip f	ault		D)	Thrus	t fault					
10.	Pedia syste	Pedial and Pinacoidal are two types of classes forms under crystallographic										
	A)	Triclinic			B)	Mono	clinic					
	C)	Orthorhombic	;		D)	Tetrag						
11.	Volc	anic equivalent o	of Sven	ite is:								
11.	A)	Dacite Dacite	B)	Rhyolit	e	C)	Trachyte	D)	Andesite			
12.	Folds	s that possess pla	ınar lin	ıbs and sl	iarn a	ngular h	inges are kno	wn as:				
	A)	Parallel folds			B)	_	on folds					
	C)	Concentric fo	lds		D)		nbent folds					

13.		structure car	ı be expo	ected in the f	field of eld	ongation of fin	ite strain	ellipse.				
	A)	Fold	B)	Fault	C)	Boudinage	D)	No structure				
14.	is a foliation defined by subparallel cleavage domains within which pressure solution has forced the concentration of abundant micas.											
			the conc									
	A)	Gneissosity		B)		stosity						
	C) Eutaxitic structure D) Crenulation cleavage											
15.		rocks that are recommonly of	converte	-	nt to respo	ond in a plastic	e manner	to faulting				
	A)	Sole marks	B)	Cockscom	ib C)	Gouge	D)	Mylonite				
16.	An unconformity separating strata that are parallel to each other:											
	A)	Disconform		B)		conformity						
	C)	Angular unc	conformi	ty D)	None	e of the above						
17.	A combination of strike-slip motion and extension (divergent strike-slip) is known as											
	A)	Transpression	on	B)	Trans	sform						
	C)	Transtension		D)	Pull-	apart						
18.		are segments	s of ocea	nic crust bet	ween isla	nd arcs or bety	ween isla	nd arcs and				
	conti	-										
	A)	Oceanic tren	nches	B)	Back	-arc basins						
	C)	Accretionar	y prisms	D)	Cont	inental shelve						
19.		e parts of the c	ontinent	s composed	of Precam	nbrian rocks w	ith little	or no				
	sedin	nent cover:										
	A)	Aulacogens	B)	Basin	C)	Shield	D)	Fore-arc				
20.	The p	The process of uplift and erosion is known as										
	A)	Crustal geot	herm	B)	Crust	Crustal exhumation						
	C)	Orogeny		D)	Subd	uction						
21.	are the fragments of the crust, brought to the surface by volcanic eruptions.											
	A)	Crustal xend		B)	_	natites	•	•				
	C)	Basalts		D)	_							
22.	Whic	h has the high	est densi	tv among the	e followin	σ?						
	A)	Plagioclase	B)	Biotite	C)	Quartz	D)	Perovskite				
23.	A region of the mantle just above the core where seismic velocity gradients are											
23.	_	alously low:	ille just a	above the co.	ie where s	eisinic veloci	iy gradici	nts are				
	A)	D-layer	B)	Lithosphe	re C)	SIAL	D)	SIMA				
24.	In Ud	lden-Wentwor	th grain	size scale, th	e clastic s	ediment of 4n	nm to 64	mm is called				
	A)	Granule	B)	Pebble	C)	Cobble	D)	Boulder				
25.	The h	oundary betwe	een diao	enesis and m	netamornh	ism is						
•	A)	50 °C	B)		C)		D)	$500~^{0}\mathrm{C}$				

26.	are nearly spherical, polycrystalline carbonate particles of sand size that have a concentric or radial internal structure.									
	A)	Ooliths	B)	Sparry calcite	C)	Intraclasts	D)	Cement		
27.	The ch	nemical formula Anhydrite	a CaSO. B)	₄ 2H ₂ O is applic Gypsum	cable to C)	: Kieserite	D)	Halite		
28.	The m A)	ineral omphaci Marble	te is ass B)	ociated with with Williams	hich of C)	the following r Ecologite	ock? D)	Dolostone		
29.	Which A)	one of the foll Garnet	owing r B)	ninerals doesn' Glaucophane			facies?	Chlorite		
30.	The PTA)	Γ values of the 376 0 C, 5.01 401 0 C, 3kb		nt point in the a B) D)	300° C					
31.	What is A) C)	is 'F' in ACF c FeO FeO + MnO	ompone	ents defined by B) D)	FeO +					
32.	Attain: A) C)	ment of T _{max} bo Clockwise P- Cooling path		• •		ockwise P-T-t papers ockwise path	path			
33.	The av A)	verage density of 4.42 g/cm ³			C)	6.52 g/cm ³	D)	5.62 g/cm ³		
34.	The sp A)			nt in intermedia 45 - 52 wt %	_	ous rock is 52 - 66 wt %		35- 42 wt %		
35.	_			gary texture is Granophyre		Aplite	D)	Andesite		
36.	A textor A) C)	ure of replacem Saussuritization Seritization	-	blagioclase by e B) D)	epidote Biotiti Uraliti	zation				
37.	The pr A) C)	cocess whereby Assimilation Convection	a solid	changes its pha B) D)	use to va Condu Sublin	ection				
38.	Find o A)	ut a high field : K	strength B)	element (HFS)	from the C)	he following: Cs	D)	Th		
39.				genic isotope is: 245.25 Gyr		4.468 Gyr	D)	49.44 Gyr		

40.	_	eneral symbol 1	ll is of									
	A)	Cube		B)		Dodecahedron						
	C)	Tetrahexahedr	ron	D)	Octahe	edron						
41.	Any lu agent:	ıminous radiatio	ons emi	tted from a sub	stance a	after the remova	al of the	exciting				
	A)	Phosphorescer	nce	B)	Fluorescence							
	C)	-		Ď)	Iridescence							
42.	Find o	ut a biaxial pos	itive mi	neral from the	followi	ng:						
	A)	Topaz	B)	Aragonite	C)	Hypersthene	D)	Muscovite				
43.	The mineral in the Moh's scale that crystallises in cubic system:											
	A)	Corundum	B)	Quartz	C)	Topaz	D)	Fluorite				
44.		solute value of			n the ex		e indice					
	A)	Birefringence	B)	Pleochrism	C)	Refraction	D)	Reflection				
45.		thermal ore dep OC is termed a		rmed at less th	an 1500	metre depth ar	nd temp	erature of				
	A)	Epithermal	B)	Mesothermal	C)	Hypothermal	D)	Hydrothermal				
46.	Find t	he tungsten bea	ring mi	neral from the	followi	ng:						
	A)	Turgite	B)	Siderite	C)	Scheelite	D)	Goethite				
47.	Find o	ut the sulphide	mineral	of copper as p	er the c	hemical compo	sition C	CuS:				
	A)	Malachite	B)	Azurite	C)	Cuprite	D)	Covellite				
48.	Cassiterite is the ore mineral of											
	A)	Zinc	B)	Silver	C)	Tin	D)	Antimony				
49.	The places Sukinda and Katpal in Odisha are famous for which of the following mineral deposit?											
	A)	Copper	B)	Chromite	C)	Zinc	D)	Gold				
50.	Specific gravity of baryte is:											
	A)	3.5 g/cm^3	B)	4.5 g/cm^3	C)	5.4 g/cm^3	D)	6.2 g/cm^3				
51.	_	na type BIF is as	ssociate			_	Ţ .					
	A) C)	Volcanic arc Glaciogenic		B) D)		ental platform of these						
52.	Magne	esite deposit is i	dentifie	ed from which	of the fo	ollowing distric	t of Ker	ala:				
	A)	Wayanad	B)	Nilambur	C)	Kollam	D)	Palakkad				
53.	Index	fossils from lov	ver Dev	onian to upper	Cretace	eous:						
	A)	Brachiopods	B)	Gastropods	C)	Ammonites	D)	Trilobites				

54.	The p	plant fossil Gangamopte	eris repr								
	A)	Upper Gondwana		B)	Lowe	er Gondwana					
	C)	Cretaceous		D)	Juras	sic					
55.		- is a monsoonal index	planktoı			-					
	A)	Texturalia		B)	Cibic	ides					
	C)	Neogloboquadrian		D)	Globi	igerina					
56.	Amo	ng the following trilobi	ltes, wh	ich one	belong	s to Middle Ca	mbrian?				
	A)	Phacops B)	Olenu	.S	C)	Paradoxide	D)	Olenellus			
57.	The s	smallest unit of stratigra	phic sca	ale is							
	A)	Zone B)	Stage		C)	Series	D)	System			
58.	is an area of complete darkness in the ocean with a very low temperature of about 1 0 C to 5 0 C.										
	A)	Bathyal zone		B)	Abys	sal zone					
	C)	•		Ď)	•	ral zone					
59.	The a	average height of Lesse	r Himala	ayan Zo	ne rang	ges between					
	A)	1000 m - 2000 m		B)	2000	m - 3000 m					
	C)	3000 m - 4000 m		D)	4000	m - 5000 m					
60.	Whic	ch rift is bordered the N	E part o		crator	n?					
	A)			B)		vari rift					
	C)	Kuchma rift		D)	Maha	ınadi rift					
61.		quartzite is representing	the Che	•	-			:			
	A)			B)		nkonda Quartzi	ite				
	C)	Pulivendla Quartzite		D)	Gulch	neru Quartzite					
62.	The isotope that can be used to determine the age of groundwater:										
	A)	Uranium 235 B)	Thoriu	um 232	C)	Potassium 40) D)	Carbon 14			
63.	Match the Litho units in List 1 with their porosity percentage in List 2 and choose the correct answer										
	COIIC	List I	List	П							
	1.	Silt	a.	30							
	2.	Clay	a. b.	28							
	3.	Coarse gravel	c.	42							
	3. 4.	Limestone	d.	46							
	A N	1 12 2 1 4		D)	1	2 1 2 4	1				
		1 - d, 2 - c, 3 - b, 4 - c				2 - b, 3 - c, 4 - c					
	C)	1-b, 2-c, 3-d, 4-	a	D)	1-c,	2 - a, 3 - d, 4 -	В				
64.		is resulting from rele						uifers either			
			n uirouş		opening in the confining bed. Artesian spring						
	A)	Contact spring	ring	B)							
	C)	Impervious Rock Sp	ımg	D)	rract	ure spring					

65.	The frozen portion of the earth's surface water including ocean, lakes, rivers, snow cover, glaciers, ice caps, ice sheets and frozen ground, is termed as:											
	A)	Hydrosphere	B)	Cryosp	phere	C)	Thermospher	e D)	Exosphere			
66.	The ag	ge of 'Little Ice		major p	period o	of ice ad	lvance) is:					
	A)	0.1 - 0.4 ka B	P		B)	0.4 - 0	07 ka BP					
	C)	0.2 - 0.4 ka B	P		D)	0.3 - 0).5 ka BP					
67.	A tech	nique which C	ANNO'	T be app	plied in	Quater	nary dating:					
	A)	Radiocarbon			B)	Thermoluminescence						
	C)	Rb-Sr			D)	Tephr	ochronology					
68.	Quater A)	f the following mary Period: Base level cha	ange an	d tecton	ic effec	ets		ronmen	ts during the			
	B) Catchment water balance and erosional processes (C) Matemorphism of the basement rocks											
	C) Metamorphism of the basement rocksD) Catchment fluvial (river channel) processes											
69.	Which one of the terms is NOT related to the kind of aperture commonly found in											
0).		grains?	1115 15 1	(01 10)	iaica io	the Ki	na or apertare	Commo	my round m			
	A)	Oval			ate	C)	Tricolpate	D)	Tricolporate			
70.	Which	one of the foll	owing e	elements	s is NO	T a Sid	erophile?					
	A)	Fe	B)	Co		C)	Ni	D)	Cu			
71.	Mass (A) C)	of solute (mg) of Milligrams pe Molarity		•			per million (pp					
72.	What I A) B) C) D)	happens in a 'cl Mass exchang Energy exchang Both mass and Neither mass	ge only nge only d energy	y y exchai	nge	system	?					
73.	The fin A) B) C) D)	rst law of therm The concept of The concept of Principle of co Degrees of fre	of entrop of entrop onserva	by by scale tion of e	energy	n which	of the following	ng conce	ept?			
74.		nts that occur in ally < 0.1 wt%)		or mine	rals in o	concent	ration of a few	tenths o	of a percent			
	A)	Trace element			B)	Major	elements					
	C)	Lanthanides			D)	Actini						
75.	Which	one among the	e follow	ing is n	ot a pai	t of the	supersystems	of the ea	arth?			
	A)	Asthanospher		_	B) 1	Geosp						
	C)	Hydrosphere			D)		sphere					

76.	Find out the crustal abundance of elements in decreasing order:												
	A)	O > Na > Si > Ca	B)	O > Si > Na > Mg									
		O > Al > Si > Ca	Ď)	O > Si > Al > Fe									
77.		is a pathfinder for Ag-Pb	-Zn: Cı	ı-Pb-Zn sulphide depos	its.								
		Mo, Te, Au B) Se, V			D)	Hg							
78.		nge the following exploration r	nethods	s in increasing order of	cost per	square							
	i)	Geological mapping	ii)	Geophysical Surveys									
	iii)	Drilling	iv)	Remote Sensing									
	v)	Geochemical Surveys (bulk	sampli	ng)									
		i - ii - iii - iv - v		ii - iii - i - v - iv									
	C)	iv - v - iii - ii - i	D)	iv - i - ii - v - iii									
79.	The first geophysical technique to be used in oil and gas exploitation:												
	A)	Gravity method	B)	Self-potential metho	d								
	C)	Magnetic method	D)	Electromagnetic metl	nod								
80.	Ram	Rampura-Agucha mine is located in which state of India?											
	A)	Karnataka	B)	Gujrat									
	C)	Rajasthan	D)	Madhyapradesh									
81.		ethod in which current is pa			allic el	ectrodes and							
	poter	ntial difference is measure by u											
	A)	•			hod								
	C)	Self-potential method	D)	Resistivity method									
82.	_	In groundwater hydrology, the hydraulic conductivity is expressed in											
	A)	m ² /day	B)	Darcy									
	C)	m / day	D)	1 atmosphere/cm									
83.	The (A)	type of drilling method in whic Rotary Percussion method	h air is	used as drilling fluid:									
	B)	Rotary method											
	C)	Reverse-circulation rotary n	nethod										
	D)	Cable tool method											
84.	Whic	ch one of the following is a maj	or cons	stituent in potable water	?								
	A)	Beryllium B) Gallii		C) Scandium	D)	Calcium							
85.		ch one of the following is the p		application of gamma-g	gamma	logs in							
		urface investigation of groundy											
	A)	Identification of fluid condu	ctivity										
	B)	Identification of lithology											
	C) D)	Identification of salinity Identification of moisture co	ntont										
	וע	ruchimication of moisture co	mem										

86.		ch one of the fo	_			od for c	controlling sali	ne wate	r intrusion?		
	A)	Modification	-	pıng pat	tern						
	B)	Artificial red	_								
	C)	Subsurface b									
	D)	Relocation of	of wells								
87.	The r	ock which allo	ws grou	ndwater	to flow	by obe	eying Darcy's	law:			
	A)	Granite	B)	Marble	e	C)	Sandstone	D)	Shale		
88.		is the reservo	oir rock 1	for petro	leum in	Boml	bay High.				
	A)	Sandstone	B)	Limes	tone	C)	Shale	D)	Quartzite		
89.	Elect	rical conductiv	ity of gr	oundwat	er is rel	lated to)				
	A)	Storativity			B)	Speci	fic yield				
	C)	Permeability	7		D)	Total	dissolved soli	ds			
90.	The a	absolute age of	the grea	t Cenom	anian tı	ransgre	ession:				
	A)	98 Ma	B)	65 Ma		C)	550 Ma	D)	240 Ma		
91.	The s	state from whic	h Lamet	a beds ca	arrying	fossils	of dinosaur e	ggs is re	ported:		
	A)	Karnataka			B)	Keral			<u>.</u>		
	C)	Goa			D)	Madh	ıya Pradesh				
92.	What	t is the approxi	mate cor	nposite t	thicknes	ss of th	e Deccan Vol	eanics?			
	A)	1000 m	B)	2000 n		C)	3000 m	D)	4000 m		
93.	Midd	lle Siwalik Gro	up of Hi	machal l	Pradesh	is cha	racterized by t	he prese	ence of		
	A)	Mammalian	fauna		B)	Rema	ins of Ramapi	thecus			
	C)	Reptiles			D)	None	of the above				
94.	Which one of the following is NOT a Group under the Vindhyan Supergroup?										
	A)	Bhander	B)	Raipui	r	C)	Rewa	D)	Kaimur		
95.	The r	nean or averag	e water v	velocity	at any p	oint al	long a river is	defined	as		
	A)	The rate of r	echarge		B)	The 1	rate of runoff				
	C)	The rate of o	discharge	2	D)	None	of the above				
96.		are flat bac	kshore a	reas on 1	beaches	, form	ed by deposition	on of sec	diment as		
	wave	s rush up and e	expend the	ne last of	f their e	nergy.					
	A)	Swash zones	s B)	Surf zo	ones	C)	Breaker zon	es D)	Berms		
97.	Wate	r with high cor	ncentratio	on of sul	phuric	acid th	at drains from	some m	ining areas to		
	pollu	te surface wate	r resourc	ces is ter	med as:	:					
	A)	Heavy metal	l pollutic	n	B)	Hazaı	rdous chemica	l polluti	on		
	C)	Acid mine d	rainage		D)	None	of the above				
98.		nighest concent		-	oheric o	zone o	ccur from app	roximate	ely km		
		e the surface of			1	C	20, 25 1	D)	0.101		
	A)	10-15 km	B)	20-25	кm	C)	30-35 km	D)	0-10 km		

99.		h one of the fol	_		a gase	_		D)	N			
	A)	SO_2	B)	H_2S		C)	CO	D)	N_2			
100.	The ty	ype of river tha	t keeps	its cours	se by v	alley de	epening during	g uplift:				
	A)	Antecedent	B)	Suseq	uent	C)	Consequent	D)	Insequent			
101.	The n	node of transpo	rt of Cl	lav·								
101.	A)	Inertia susper		iuy.	B)	Tract	rion					
	C)	Colloidal sus		n	D)		Viscous suspension					
			-				-					
102.	-					ur at intervals of twelve and half hours?						
	A)	Diurnal tide	1 . 1		B)	Semi-Diurnal tide						
	C)	Quarter-dium	nal tide		D)	Neap	tide					
103.	Which one of the following is NOT a factor for modifying the Ocean currents?											
	A)	Salinity			B)	Direc	ction and shape	of the	coast line			
	C)	Seasonal variations				Botto	om topography					
104.	Whic	h one of the fol	lowing	ic an an	alviica	1 techni	aue through wh	nich it ic	lentifies the			
104.		ical functional										
	A)	Petrological l			B)		red Spectrome		ilds III IV.			
	C)	XRF		1	Ď)	AMS	-	J				
105	T1			41		4	.1 1 4		1:-1.4::-1.4			
105.	The mineral which possesses the properties such as heat resistance, light weight, elasticity and radiation resistance:											
	A)	Quarz	B)	Felds ₁	oar	C)	Graphite	D)	Magnetite			
				-	_	,	-	,	C			
106.			_	-	-	-			ace is termed as			
	A)	Isostasy	B)	Isobat	th	C)	Isochron	D)	Isohaline			
107.	The primary unit of lithostratigraphy:											
	A)	Group	B)	Memb		C)	Formation	D)	Bed			
		•				,		,				
108.		ilicate structure		ich Garr								
	A)	Phyllosilicate	Э		B)		osilicate					
	C)	Inosilicate			D)	Cyclo	osilicate					
109.	The v	ertical distance	betwee	en corres	spondii	ng lines	in the two frac	ture sur	faces of a			
		oted stratum is:			•	C						
	A)	Throw	B)	Heave	e	C)	Strike	D)	Apparent dip			
110.	Older	rocks surround	ded by y	vounger	rocks i	in norm	al sequence is a	ralled				
110.	A)	Outlier	ica oy .	younger	B)	Inlie	-	Junea				
	C)	Nonconform	ity		D)		ılar unconform	ity				
								•				
111.		vavelength for v			-	-	•					
	A)	Atmospheric		W	B)	-	al Resolution	.1.4!				
	C)	Aerotriangula	ation		D)	A1r-te	o-Ground corre	elation				

112.	The Sa Airspa	atellite Based A	augmen	tation S	ystem t	hat sup	ports flight na	vigation	over Indian	
	A) 1	GLONASS	B)	NAVI	С	C)	MSAS	D)	GAGAN	
113.	Neo-g	ternational space lobal scale to g of the entire Ea SRTM	enerate				_			
	,		,					D)	51 0 1	
114.	Diffus A)	ion of radiatior Absorption	by atm B)	ospheri Adsor	-	les is c C)	alled Reflection	D)	Scattering	
115.	Which A) C)	among the fol Lyman-Alpha Mars Colour	Photor	neter	payload B) D)	ad of Mars Orbiter Mission? Thermal Infrared Imaging Spectromete Solar X-ray monitor				
116.	The G A) C)	reat Red Spot i Anticyclone i Magmatic hot	n Jupite	r	B) D)	•	ne in Jupiter pole of Jupite	r		
117.	A) C)	are the result of Arctic oscillar La Niña		bances	in the n B) D)	e magnetosphere caused by solar wind. El Niño Aurora				
118.	Olymp A) C)	ous Mons is a Shield Volcar Rift Valley			B) D)	Fissur Canyo	re eruption on			
119.	Lonar A) C)	Lake is an exar Plunge Pool Playa Lake	mple of	:	B) D)		w Lake et Crator Lake			
120.	Selence A)	ology is the bran Lake	nch of g B)	geology Canyo		als with C)	the study of: Moon	D)	Mars	